Layer-Wise Compressive Training for Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
Greedy Layer-Wise Training of Deep Networks
Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multi-layer neural networks have many levels of non-linearities allowing them to compactly represent highly non-linear and highly-varying functions. However, until re...
متن کاملTowards dropout training for convolutional neural networks
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this...
متن کاملBeyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
Despite the tremendous achievements of deep convolutional neural networks (CNNs) in most of computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step visualization method that aims to shed light on how deep CNNs recognize images and the objects therein. We start out with a layer-wise relevance propagation (LRP) step w...
متن کاملDeep Convolutional Neural Networks with Layer-Wise Context Expansion and Attention
In this paper, we propose a deep convolutional neural network (CNN) with layer-wise context expansion and location-based attention, for large vocabulary speech recognition. In our model each higher layer uses information from broader contexts, along both the time and frequency dimensions, than its immediate lower layer. We show that both the layer-wise context expansion and the location-based a...
متن کاملAccurate Lung Segmentation via Network-Wise Training of Convolutional Networks
We introduce an accurate lung segmentation model for chest radiographs based on deep convolutional neural networks. Our model is based on atrous convolutional layers to increase the field-of-view of filters efficiently. To improve segmentation performances further, we also propose a multi-stage training strategy, network-wise training, which the current stage network is fed with both input imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Future Internet
سال: 2018
ISSN: 1999-5903
DOI: 10.3390/fi11010007